## inorganic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

## Rhombohedral boron subnitride, $B_{13}N_2$ , by X-ray powder diffraction

### Oleksandr O. Kurakevych and Vladimir L. Solozhenko\*

LPMTM-CNRS, 99 avenue J. B. Clement, 93430 Villetaneuse, France Correspondence e-mail: vls@lpmtm.univ-paris13.fr

Received 8 June 2007 Accepted 30 July 2007 Online 17 August 2007

The structure of the title compound consists of distorted  $B_{12}$  icosahedra linked by N-B-N chains. The compound crystallizes in the rhombohedral space group  $R\overline{3}m$  (No. 166). The unit cell contains four symmetry-independent atom sites, three of which are occupied by boron [in the 18*h*, 18*h* (site symmetry *m*) and 3*b* (site symmetry  $\overline{3}m$ ) Wyckoff positions] and one by nitrogen (in the 6*c* Wyckoff position, site symmetry 3m). Two of the B atoms form the icosahedra, while N atoms link the icosahedra together. The main feature of the structure is that the 3*b* position is occupied by the B atom, which makes the structure different from those of  $B_6O$ , for which these atom sites are vacant, and  $B_{4+x}C_{1-x}$ , for which this position is randomly occupied by both B and C atoms.

## Comment

The fortunate combination of lightness, hardness, strength, chemical inertness and high cross section for neutron absorption has suited boron and boron-rich phases (B<sub>6</sub>O,  $B_{4+x}C_{1-x}$ , etc.) to many technological applications (Emin, 1987; McMillan, 2002). Very recently, we have synthesized a new member of this group, boron subnitride, 'B<sub>6</sub>N'. From the electron energy loss spectroscopy data, the stoichiometry of the phase has been determined to be  $B_{6\pm 1}N$ , and from the X-ray study as  $B_{13}N_2$ . The phase has a structure similar in some respects to those of  $\alpha$ -rhombohedral boron (Decker & Kasper, 1959),  $B_{4+x}C_{1-x}$  (Kirfel et al., 1979; Aselage et al., 1997) and B<sub>6</sub>O (Higashi et al., 1991; Aselage et al., 1997). However, the relative line intensities correspond to none of these three structures. The similarity is greatest to  $B_{4+x}C_{1-x}$ , which has the same unit cell, space group and atom sites as the nitride. Studies of the carbide by X-ray diffraction, Raman spectroscopy and, especially, <sup>13</sup>C and <sup>11</sup>B nuclear magnetic resonance revealed that a very complicated atomic distribution of carbon all over the lattice takes place via C/B disorder, resulting in C-C-C, B-B-C and C-B-C intericosahedral chains, as well as B<sub>11</sub>C and B<sub>12</sub> icosahedra (Aselage et al., 1997; Tallant et al., 1989; Bullett, 1982; Lundstrom, 1997). In the case of 'B<sub>6</sub>N', our Raman data have supported the suggestion that the 'B<sub>6</sub>N' structure is similar to that of boron carbide,  $B_{4+x}C_{1-x}$ , but with no evidence of N/B disorder of the type seen in the carbide. Thus, the nitride features N-B-N linkages, but no N-N-N linkages, which would be much less stable than the carbon analogues in any case.

In the present work, the structure of the new boron subnitride  $B_{13}N_2$  has been determined by Rietveld refinement





Rietveld full profile refinement of the X-ray powder diffraction pattern of  $B_{13}N_2$ .



#### Figure 2

The unit cell of B<sub>13</sub>N<sub>2</sub>, containing four symmetry-independent atom sites, three of which are occupied by boron [*i.e.* B1, B2 and B4 in the 18*h*, 18*h* and 3*b* Wyckoff positions, respectively] and one by nitrogen (N3 in the 6*c* Wyckoff position). [Symmetry codes: (i)  $y - x + \frac{1}{3}$ ,  $-x + \frac{2}{3}$ ,  $z + \frac{2}{3}$ ; (-i)  $x - y + \frac{2}{3}$ ,  $x + \frac{1}{3}$ ,  $-z + \frac{1}{3}$ ; (ii)  $x + \frac{2}{3}$ ,  $y + \frac{1}{3}$ ,  $z + \frac{1}{3}$ ; (-ii)  $-x + \frac{1}{3}$ ,  $-y + \frac{2}{3}$ ,  $-z + \frac{2}{3}$ ; (iii)  $x + \frac{1}{3}$ ,  $x - y + \frac{2}{3}$ ,  $z + \frac{2}{3}$ ; (-iii)  $-x + \frac{1}{3}$ ,  $-z + \frac{1}{3}$ ; (iii)

of powder diffraction data collected at ambient conditions (Fig. 1). The Bragg lines of the compound have been indexed in the rhombohedral cell, with lattice parameters a =5.4455 (2) Å and c = 12.2649 (9) Å. In order to check all possibilities of the atom type distribution over symmetryindependent site positions, we have performed a Rietveld refinement of several unit cells of the 'B<sub>6</sub>N' compound. All the cells contained atoms B1 and B2 (18h Wyckoff position), while the 6c and 3b Wyckoff positions were allowed to be occupied by either B or N atoms. Satisfactory refinement was achieved only in the case of the starting unit cell containing two symmetry-independent B atoms of the 18h Wickoff position, one independent N atom in the 6c position and one B atom in the 3b position (Fig. 2). The site occupancies of the atoms of each crystallographic type are close to unity, so the synthesized phase has the B<sub>13</sub>N<sub>2</sub> stoichiometry.

## Experimental

Boron subnitride,  $B_{13}N_2$ , was synthesized from a B–BN melt at 5 GPa using the multianvil X-ray system MAX80 at beamline F2.1, HASYLAB–DESY. The experimental setup has been described elsewhere (Solozhenko & Peun, 1997). The starting materials,  $\beta$ -rhombohedral boron ( $\beta$ -rh B) and hexagonal boron nitride (hBN), were mixed in the 5:1 molar ratio that corresponds to the B<sub>6</sub>N stoichiometry, compressed to 5 GPa, heated to 2500 K and then quenched to ambient conditions. Since the B<sub>13</sub>N<sub>2</sub> phase crystallizes by peritectic reaction, the title compound has always been found in a mixture with  $\beta$ -rh boron, an I-tetragonal (I-t) boron-like phase (Ploog *et al.*, 1972) and hBN. According to the Rietveld refinement, the sample contains about 22 vol% B<sub>13</sub>N<sub>2</sub>.

c = 12.2649 (9) Å

V = 314.97 (4) Å<sup>3</sup>

c = 5.037 (3) Å $V = 389.91 \text{ Å}^3$ 

c = 6.6357 (2) Å

 $V = 35.87 (1) \text{ Å}^3$ 

Z = 50

Z = 2

Z = 3

#### Phase 1

Crystal data

 $B_{13}N_2$   $M_r = 168.54$ Trigonal,  $R\overline{3}m$ a = 5.4455 (2) Å

#### Phase 2

Crystal data

| BN <sub>x</sub>               |  |
|-------------------------------|--|
| $M_r = 10.81$                 |  |
| Tetragonal, $P\overline{4}n2$ |  |
| a = 8.7979 (18)  Å            |  |

#### Phase 3

#### Crystal data BN $M_r = 24.82$ Hexagonal, $P\overline{6}m2$ a = 2.49824 (8) Å

## Phase 4

| Crystal data                    |                          |
|---------------------------------|--------------------------|
| В                               | c = 10.1398  Å           |
| $M_r = 10.81$                   | $V = 823.05 \text{ Å}^3$ |
| Trigonal, R3mr                  | Z = 105                  |
| $\alpha = 65.351 \ (3)^{\circ}$ |                          |

| Crystal data                                                         |                                                             |
|----------------------------------------------------------------------|-------------------------------------------------------------|
| $H_3 BO_3$ $M_r = 58.81$                                             | c = 9.600 (10)  Å<br>$V = 412.67 \text{ Å}^3$               |
| Trigonal, $P3_2$<br>a = 7.0453 Å                                     | <i>Z</i> = 6                                                |
| Phase 6                                                              |                                                             |
| Crystal data                                                         |                                                             |
| BN<br>$M_r = 24.82$<br>Hexagonal, $P\overline{6}m2$<br>a = 2.54 Å    | c = 6.598 (3) Å<br>V = 36.86 Å <sup>3</sup><br>Z = 2        |
| All phases                                                           |                                                             |
| Crystal data                                                         |                                                             |
| Cu $K\alpha$ radiation<br>T = 297 K<br>Specimen prepared at 5 GPa    | Specimen prepared at 2400 K<br>Fine powder, black           |
| Data collection                                                      |                                                             |
| Inel G3000 TEXT diffractometer                                       | Scan method: fixed                                          |
| Refinement                                                           |                                                             |
| $R_{\rm p} = 0.100$<br>$R_{\rm wp} = 0.136$<br>$R_{\rm exp} = 0.034$ | S = 3.97<br>14 parameters<br>$(\Delta/\sigma)_{max} = 0.21$ |
|                                                                      |                                                             |

The necessity of Rietveld analysis of the powder diffraction pattern that contains six phases (five with already established structures and one new) has complicated the structure refinement. The  $2\theta$  interval for the profile fitting (Fig. 1) was chosen so that the main lines of boron subnitride  $B_{13}N_2$  were not overlapped by the lines of other phases. The profile fitting of all the phases except  $B_{13}N_2$  was performed employing both LeBail and Rietveld procedures using the literature data on the structures of corresponding phases.

Six phases were employed for profile fitting:  $B_{13}N_2$  (phase 1),  ${}^{\circ}B_{50}N_2{}^{\circ}$  (phase 2), hBN (phase 3),  $\beta$ -rhombohedral boron (phase 4), boric acid H<sub>3</sub>BO<sub>3</sub> (phase 5) and phase 6, which has the same structure as phase 3 but a slightly different cell parameter *c*. Phase 6 was added to adjust the profile asymmetry of the 002 line due to a slight nonhomogeneity in the degree of ordering of hBN (Franklin, 1950, 1951). This has improved the fitting of the most intensive line of hBN ( $2\theta = 24-26^{\circ}$ ) and has not influenced fitting out of this range. The only line of phase 5 belongs to this  $2\theta$  range and does not affect the structure refinement of the principal phase. Phases 2 and 4 have some lines overlapping with the lines of  $B_{13}N_2$ , but these lines are notice ably narrower than those of phase 1; this fact much facilitated the intensity extraction.

The sample contains approximately 22 vol%  $B_{13}N_2$ , 37 vol% hBN and about 41 vol% boron. The boron content (both  $\beta$ -rhombohedral boron and a I-t boron-like phase) was estimated using the values of phase fractions for  $B_{13}N_2$  and hBN and the total composition of the starting mixture (5B + BN). A very small amount of boric acid (0.001 vol%) was also observed. Its formation may be attributed to hBN hydrolysis that cannot be avoided in the high-pressure experiments.

Data collection: *SYMPHONIX* (Inel, 2006); cell refinement: *GSAS* (Larson & Von Dreele, 2000); data reduction: *SYMPHONIX*; program(s) used to solve structure: *GSAS*; program(s) used to refine structure: *GSAS*; molecular graphics: *POWDERCELL* (Kraus & Nolze, 1996); software used to prepare material for publication: *GSAS*.

# inorganic compounds

The authors are grateful to T. Chauveau for his help with the X-ray diffraction experiments and to Dr V. A. Tafeenko for useful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SQ3084). Services for accessing these data are described at the back of the journal.

### References

Aselage, T. L., Tallant, D. R. & Emin, D. (1997). *Phys. Rev. B*, 56, 3122–3129.
Bullett, D. W. (1982). *J. Phys. C Solid State Phys.* 15, 415–426.
Decker, B. F. & Kasper, J. S. (1959). *Acta Cryst.* 12, 503–506.
Emin, D. (1987). *Phys. Today*, 40, 55–62.

Franklin, R. E. (1950). Acta Cryst. 3, 107-121.

Franklin, R. E. (1951). Acta Cryst. 4, 253-261.

Higashi, I., Kobayashi, M., Bernhard, J., Brodhag, C. & Thevenot, F. (1991). *AIP Conf. Proc.* 231, 201–204.

Inel (2006). SYMPHONIX. Version 2.6. Inel Inc., Stratham, New Hampshire, USA.

Kirfel, A., Gupta, A. & Will, G. (1979). Acta Cryst. B35, 1052-1059.

Kraus, W. & Nolze, G. (1996). J. Appl. Cryst. 29, 301-303.

Larson, A. C. & Von Dreele, R. B. (2000). General Structure Analysis System (GSAS). Report LAUR, pp. 86–87. Los Alamos National Laboratory, New Mexico, USA.

Lundstrom, T. (1997). J. Solid State Chem. 133, 88-92.

- McMillan, P. F. (2002). Nat. Mater. 1, 19-25.
- Ploog, K., Schmidt, H., Amberger, E., Will, G. & Kossobutzki, K. H. (1972). J. Less Common Met. 29, 161–169.
- Solozhenko, V. L. & Peun, T. (1997). J. Phys. Chem. Solids, 58, 1321-1323.

Tallant, D. R., Aselage, T. L., Campbell, A. N. & Emin, D. (1989). *Phys. Rev. B*, **40**, 5649–5656.